Anion transport in basolateral (sinusoidal) liver plasma-membrane vesicles of the little skate (Raja erinacea).

نویسندگان

  • G Hugentobler
  • G Fricker
  • J L Boyer
  • P J Meier
چکیده

The mechanism(s) of [35S]sulphate transport was investigated in basolateral liver plasma-membrane vesicles of the little skate elasmobranch, Raja erinacea. Imposition of an intravesicular alkaline pH gradient (pH 8.0 in/pH 6.0 out) stimulated sulphate uptake 5-10-fold compared with pH-equilibrated (pH 8.0 in = out) conditions and 2-3-fold over equilibrium sulphate uptake (overshoot). This pH-gradient-stimulated sulphate uptake was temperature-dependent, saturable with increasing concentrations of sulphate and could be inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone and the anion-transport inhibitors 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid (DIDS) and probenecid, cis-Inhibition of pH-gradient-driven sulphate uptake was observed with sulphate, oxalate, cholate and bromosulphophthalein, but not with chloride and taurocholate. In addition, sulphate and oxalate trans-stimulated [35S]sulphate uptake under pH-equilibrated conditions. Although also stimulated by an inside-alkaline pH gradient, transmembrane transport of [3H]cholate was not inhibited by DIDS, suggesting that its pH-gradient-driven uptake is not mediated by an anion-transport 'carrier'. In conclusion, these studies indicate that a basolateral plasma-membrane sulphate-transport system has evolved in skate hepatocytes and is similar to that in mammalian liver cells. This archaic anion-exchange system co-transports certain organic anions such as oxalate and has developed early in vertebrate evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP-dependent GSH and glutathione S-conjugate transport in skate liver: role of an Mrp functional homologue.

Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transpor...

متن کامل

Urea transport in kidney brush-border membrane vesicles from an elasmobranch, Raja erinacea.

Marine elasmobranch fishes maintain high urea concentrations and therefore must minimize urea loss to the environment in order to reduce the energetic costs of urea production. Previous studies have identified a facilitated urea transporter in the kidney of the dogfish. We examined mechanisms of urea transport in the kidney of the little skate Raja erinacea using an isolated brush-border membra...

متن کامل

Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters.

The ABC transporters bile salt export pump (BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that phospholipid excretion mainly serves to protect membranes of the biliary tree against bile salt micelles. ...

متن کامل

Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate.

Uptake of organic solutes and xenobiotics by mammalian cells is mediated by ATP-independent transporters, and four families of transporters have now been identified. To search for novel organic solute transporters, a liver cDNA library from an evolutionarily primitive marine vertebrate, the little skate Raja erinacea, was screened for taurocholate transport activity by using Xenopus laevis oocy...

متن کامل

Molecular Characterization of a Multidrug Resistance Associated Protein from the Little Skate, Raja Erinacea

Multidrug resistance protein 2 (Mrp2, symbol Abcc2) in liver plays a significant role in the biliary excretion of organic anionic conjugates. Mutations in human MRP2 result in defects in excretion of conjugated bilirubin and other cholephiles known as the DubinJohnson syndrome. Previous studies indicate that transporters with Mrp2 like functions are present in ancient vertebrates. We have now c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 247 3  شماره 

صفحات  -

تاریخ انتشار 1987